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Taking into account differences between a drill pipe (DP) and a drill collar (DC), the dril-
lstring in a vertical well is modeled as a stepped pipe conveying a drilling fluid downwards
to the bottom inside the string and then upwards to the ground from the annulus. An ana-
lytical model that describes lateral vibration of the drillstring and involves the drillstring
gravity, weight on bit (WOB), hydrodynamic force and damping force of the drilling fluid
is established. By analysis of complex frequencies, the influences of WOB, borehole diame-
ter, DP length, velocity and density of the drilling fluid on the stability of the system are
discussed.
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Nomenclature

Ach – cross-sectional flow area of annulus, m2

Ai – cross-sectional flow area inside drillstring, m2

Ao – external cross-sectional area of drillstring, m2

Cf – frictional damping coefficient of drilling fluid
Dch – borehole diameter, m
Dh – hydraulic diameter of annular flow, m
Di,Do – inner and outer diameter of drillstring, m
EI – flexural rigidity, N·m2
k – viscous damping coefficient of drilling fluid
L – drillstring length, m
Mt – mass per unit length of drillstring, kg/m
Mf – mass per unit length of fluid inside drillstring, kg/m
pi – fluid pressure inside drillstring, Pa
po – fluid pressure in annulus, Pa
Stot – wetted area per unit length, m2

T – axial force, N
Ui, Uo – flow velocity inside and outside drillstring, m/s
ρf – drilling fluid density, kg/m3

χ – added mass coefficient
ω – complex frequency

Subscripts

1 – DP segment, 2 – DC segment, L – at the borehole bottom
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1. Introduction

The drillstring is the most widely used and important part of the drilling rig system of petroleum
and natural gas. Working under complex conditions, the drillstring is apt to lose stability and
collides with the borehole wall seriously. It would lead to reduction in both the quality of wellbore
and the service life of drilling tools, and result in the raise of drilling costs ultimately (Hakimi
and Moradi, 2010; Zamani et al., 2016; Navarro-López et al., 2007).

In the recent years, many researches on transverse vibration of the drillstring have been
conducted. But most of these works ignored the interaction between the drillstring and drilling
mud. The conventional exploitation mode of oil and gas reservoir is through the vertical well,
and the studies on dynamic characteristics of the drillstring in the vertical well are the most. The
influence of installation sites of stabilizers on lateral vibration of the drillstring was discussed by
Zhao et al. (2014) and Mongkolcheep et al. (2015). Considering the damping effect of the drilling
fluid, Ghasemloonia et al. (2013, 2014) analyzed the coupled axial-transverse vibration of the
drillstring in vibration-assisted rotary drilling, however the flow effect was not included. With the
widespread implementation of extended reach wells in offshore and onshore oilfields, the dynamic
characteristics of drillstrings in the horizontal and inclined wells also attract attention of the
researchers. Considering the drillstring in an inclined well as a simply supported axially moving
rotor, Sahebkar et al. (2011) derived the kinetic equation of the string by means of Hamilton’s
principle. Zhu and Di (2011) and Zhu et al. (2012) studied the effect of pre-bent deflection
on lateral vibration of drill collars in horizontal and inclined wells respectively. Tikhonov and
Safronov (2011) and Samuel and Yao (2013) developed a two-dimensional transverse vibration
model of the drillstring to three-dimensional circumstances. Because of the complexity of the
drillstring system, the influence of drilling fluid flow on the dynamic response of the drillstring
was not considered in these studies.

With the whole process of drilling operation, both the hollow drillstring and the annular
space between the drillstring and borehole wall are filled with a drilling fluid flowing axially.
The drillstring could be regarded as a flexible and slender pipe conveying fluid in the wellbore.
Fluid-solid coupling vibration of the fluid-conveying pipe has attracted considerable attention for
its extensive engineering applications and rich dynamic responses (Jin and Song, 2005; Xu and
Yang, 2006; Panda and Kar, 2007; Wang, 2009; Ni et al., 2015). As early as 1978, Hannoyer and
Paidoussis (1978) established a dynamic model of tubular beams simultaneously subjected to
internal and external axial flows based on dynamics of cylindrical structures subjected to axial
flow (Paidoussis, 1973). Later, Zhang and Miska (2005) reduced the drillstring to a uniform
tubular beam, and used the model of fluid-conveying pipe to simulate the dynamic stability
of the drillstring system in response to its own weight, WOB and drilling fluid flowing inside
and outside the string. In 2008, Paidoussis et al. (2008) revised the expression of the frictional
viscous force in the normal direction due to the external flow used in the previous studies (Luu,
1983), and discussed the effect of flow velocity on the stability of the drillstring-like system with
a floating drill bit by using Galerkin-Fourier method. Meanwhile, Qian et al. (2008) studied
dynamics of the drill-string-like system in the counterflush drilling process where the drilling
fluid flowed downwards to the bottom through the annular region and returned upwards to the
ground in the drillstring. The model of the fluid-conveying pipe could reflect the characteristics
of fluid-structure interaction of the string system well, which was validated by an experiment
(Rinaldi and Paidoussis, 2012). In these analytical models, however, the drillstring was reduced
to a uniform pipe that was very different from the actual drillstring. The drillstring is mainly
composed of DP and DC. Compared with DP, DC has larger outer diameter and smaller inner
diameter which makes both the line density and stiffness of DC much larger than those of DP.
Under a given drilling pressure, the dynamic prediction of the uniform string model, whose
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neutral point (the point where the axial force is zero) is much higher than that of the actual
drillstring, may be inaccurate.

In view of the complexity and diversity of make-up of the string, well path, drilling fluid
properties and drilling parameters, it is still impossible to describe the dynamic response of the
drillstring system quantitatively. At present, it remains the main way to explore the effect of a
single factor on the system and coupling interaction among several factors. The present study
is concerned with the dynamics of the drillstring that is in a vertical well and simplified to be a
stepped fluid-conveying pipe composed of DP and DC. Considering the drillstring gravity, WOB
and drilling fluid flowing inside and outside the string, an analytical model of lateral vibration
of drillstring is proposed. The effect of the fluid-pipe interaction and the drillstring structure on
the stability of the drillstring system is discussed.

2. Dynamic model

The drillstring that is composed of DP, DC, connector and a variety of accessories plays an
important role in conveying drilling fluid, exerting WOB and transmitting power on the bit. In
the drilling process using a PDC bit or an impregnated diamond bit, the bottom hole rock is
broken by cutting or grinding. So, WOB fluctuates weakly and could be reduced to a constant
value. Under the action of drilling pressure and floating weight, the upper part of the drillstring
is subjected to tensile stress and the lower part is compressed. To avoid the DP from buckling,
the neutral point is generally located at the section of DC. Generally, the drilling fluid is pumped
downwards through the inner channel of the drillstring from the well head, flows through the drill
bit and returns to the ground along the annular space between the drillstring and borehole wall.
Ignoring the influence of tool joints and flexibility of the drilling rig, the drillstring is simplified
to be a stepped fluid-conveying pipe composed of DP and DC, which is constrained by a fixed
hinge at the well head and a movable hinge at the bottom hole (Fig. 1). The origin of the

Fig. 1. Sketh of drillstring

coordinate o is located at the well head, x-axis is directed vertically downwards, and the lateral
displacement of the drillstring is w(x, t). Considering the drillstring gravity, WOB, constraint of
the wellbore and drilling fluid flowing inside and outside the drillstring, the equation of lateral
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vibration of the stepped drillstring could be established by doing similar element analysis as the
model of Paidoussis et al. (2008)
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The differences between Eq. (2.1) and the model of the drillstring-like system of Paidoussis et
al. (2008) are mainly in two aspects: 1) except for the friction damping Cf and density ρf , all
the physical parameters are different between the DP part and DC part; 2) WOB that is an
important factor in the stability of the drillstring is included and the drill bit is constrained
by a movable hinge. So, the present model and parameters are more closely related to a real
system. In the following equations, subscripts 1 and 2 would be used to indicate the parameters
associated with DP and DC, respectively. The term (Aopo − Aipi − T ) in Eq. (2.1) could be
obtained by integrating Eq. (2.2) as follows.
For the DP segment
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And for the DC segment
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where piL and poL are fluid pressures of the bottom hole inside and outside the drillstring,
respectively. They could be calculated based on the following assumptions: fluid pressure in the
annulus is zero at the well head, namely, po

∣

∣

x=0
= 0; the local loss near the joint of DP and

DC is ignored, and the variation of pressure po with x is approximated as a piecewise linear
function. Considering the pressure drop of the drilling fluid flowing through the bit jet (Zhang
et al., 2005), one obtains
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Substituting Eqs. (2.2)-(2.5) into Eq. (2.1), the equations of lateral vibration of DP and DC
could be obtained. The boundary conditions at the well head and bottom are

w(0, t) =
∂2w

∂x2
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∂2w

∂x2
(L, t) = 0 (2.6)

For convenience of the analysis, the following dimensionless quantities could be defined based
on the parameters of DC
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By substituting the quantities above into Eq. (2.1), the dimensionless governing equations for
DP and DC are obtained, respectively. For the DP segment
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and for the DC segment
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The dimensionless boundary conditions are
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3. Method of solution

It is difficult to solve Eqs. (2.7)-(2.10) of the stepped fluid-conveying pipe by means of the co-
nventional Galerkin method, the multiple scales method and the differential quadrature method.
Here, the finite element method that takes the Hermite polynomial as shape function is used.

3.1. The finite element method

The drillstring is divided into n elements by (n + 1) nodes. The length of the j-th element
is Lj = ξj+1 − ξj , and the lateral displacement η(ξ) is represented by means of cubic Hermite
interpolation

η(ξ) = Nej · ηej ξj ¬ ξ ¬ ξj+1 (3.1)

where Nej and ηej are primary functions and nodal displacements of the j-th element, respec-
tively, and denoted as
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where λj = (ξj+1−ξ)/Lj , λj+1 = (ξ−ξj)/Lj . ηj and ϕj are deflection and rotation angles of the
j-th node, respectively. Substituting Eq. (3.1) into Eqs. (2.7)-(2.8) and using the virtual work
principle, we obtain the equation of motion of the j-th element as follows

Mej η̈ej +Cejη̇ej +Kejηej = 0 (3.2)

whereMej, Cej, and Kej are the mass matrix, damping matrix and stiffness matrix of the j-th
element, respectively. It should be noted that the element matrices of DP are different from
those of DC.

Assembling the element matrices in the global coordinate system and using boundary con-
ditions (2.10), the finite element equation of the whole drillstring system could be obtained

Mη̈ +Cη̇ +Kη = 0 (3.3)

whereM, C and K are all global matrices of the order 2n corresponding to mass, damping and
stiffness, respectively.

The solutions to Eq. (3.3) could be expressed as

η = ηeωτ (3.4)
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Substituting it into Eq. (3.3), gives

(ω2M+ ωC+K)η = 0 (3.5)

Equation (3.5) is a generalized eigenvalue problem, and the stability of the drillstring system
could be determined by calculating the complex eigenvalues ω of the matrix E

E =

[

0 I

−M−1K −M−1C

]

(3.6)

Re(ω) and Im(ω) are the real and imaginary parts of ω, respectively. Re(ω) is related to modal
damping of the system, and Im(ω) is the natural frequency. In the case of Re(ω)  0 and
Im(ω) 6= 0 flutter instability occurs, and the fluid velocity at which Re(ω) increases to zero
from negative values is called the critical flutter velocity ucf . Buckling instability happens when
Im(ω) = 0, and the corresponding flow rate is the critical buckling velocity ucd. In this paper,
ucf and ucd are all defined based on the internal flow of the DP segment.

3.2. Model validation

The correctness of the finite element method and the numerical model is verified by compa-
ring the present results with those given by Dai et al. (2013) and Paidoussis et al. (2008).
Firstly, the present model is reduced into a fluid-conveying cantilevered pipe that consists of

an aluminum segment and a steel segment according to Dai et al. (2013). These two segments
have the same cross section and length, and the end of the aluminum segment is fixed. For
the cantilever beam, the rows and columns that are associated with the fixed end in the global
matrices of the present model are set to zero. The evolution of the first four complex frequencies
with the flow velocity is illustrated in Fig. 2. The dimensionless critical flutter velocity of the
second mode is ucf = 7.8, which is completely consistent with literature (Dai et al., 2013), and
shows correctness of the finite element method.

Fig. 2. The present result of the first four dimensionless complex frequencies as functions of ui

Secondly, in accordance with Paidoussis et al. (2008), the stepped pipe is reduced to a uniform
tubular column and the parameters are: L1 = 0m, L2 = 1000m, Di2 = 0.45m, Do2 = 0.5m,
Dch = 10m, ρf = 998 kg/m

3, ρt = 7830 kg/m
3, Cf = 0.0125, and ν = 10

−6m2/s. By using
the finite element method, we obtain the first three complex frequencies varying with the flow
rate ui (Fig. 3). This result can be compared to that given by Paidoussis et al. (2008) through
the hybrid Galerkin-Fourier method. It needs to be pointed out that the definition of ω in this
literature is different from that in the present paper. Denoting ω in Paidoussis et al. (2008) as ω∗,
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the relationships between ω∗ and ω in this paper are: Re(ω∗) = Im(ω) and Im(ω∗) = −Re(ω).
As shown in Fig. 3, the present results agree with those of Paidoussis et al. (2008) very well,
and the dimensionless critical flutter velocity of the second and third modes are ucf = 2.2 and
ucf = 2.56, respectively. Compared with the result of Paidoussis et al. (2008), the relative errors
are only 3.8% and 0.4%. It demonstrates correctness of the present model. So, the present model
and algorithm would be used to analyze the stability of the stepped drillstring system composed
of DP and DC.

Fig. 3. The first three complex frequencies as functions of the velocity of fluid ui

4. Dynamic stability of drillstring system

The drillstring system in the vertical well with well depth L = 1000m is studied. The parameters
are, for DP: L1 = 948m, Di1 = 0.127m, Do1 = 0.1016m, mt1 = 43.75 kg/m; and for DC:
L2 = 52m, Di2 = 0.203m, Do2 = 0.07144m, mt2 = 228.28 kg/m; in addition, T = 50 kN,
Dch = 0.314m, ρf = 1200 kg/m

3, ν = 10−6m2/s. The viscosity damping coefficient Cf of the
drilling fluid is a semi-empirical value of 0.0125, and k could be calculated iteratively for each
natural frequency.

Figure 4 illustrates the first four complex frequencies of this DP-DC system varying with
the flow rate Ui1, and indicates that the system is in the stable state for Ui1 ¬ 110m/s. With
an increase in Ui1, Re(ω) and Im(ω) all decrease gradually, and stability of the DP-DC system
deteriorates.

In order to show the difference between the present stepped model and the uniform column
model (Zhang and Miska, 2005), the drillstring is also simplified as a uniform DP model, i.e.
L1 = 1000m, L2 = 0, the other parameters are chosen as the DP-DC model above. For this DP
model, the first four complex frequencies ω that are functions of Ui1 are obtained and shown
in Fig. 5. The system loses stability by buckling in its first mode at Ui1 = 43.7m/s, namely,
ucd = 43.7m/s.

By comparing Fig. 5 to Fig. 4, one could find that the stability characteristics of these two
models are very different. Both natural frequency and critical buckling velocity of the stepped
DP-DC model are all much higher than those given by the uniform DP model. Compared with
DP model, DP-DC model has a lower neutral point and a higher stiffness of the compression
section because the linear density and stiffness of DC are all larger than those of DP. This is
consistent with the realistic well condition. As a result, DC could improve the stability of the
drillstring system significantly, and the stepped DP-DC model could describe the stability of
the drillstring system better.
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Fig. 4. The first four complex frequencies as functions of Ui1 by the stepped DP-DC model
(Dch = 0.314m)

Fig. 5. The first four complex frequencies as functions of Ui1 by the uniform DP model

5. The effect of parameters on stability

In addition to the internal flow rate Ui, the parameters such as WOB TL, borehole size Dch, well
depth L and drilling fluid density ρf also have effects on the stability of the drillstring system.

5.1. WOB

WOB is an important drilling parameter which influences drilling speed greatly and could
be controlled by adjusting the hook load. With an increase in WOB, the neutral point gradually
moves up. In order to avoid the DP from compression, the neutral point should be located in
the drill collar. As a result, WOB should not exceed 98kN for the drillstring system at hand.
Figure 6 shows the variation of the first four dimensionless complex frequencies with WOB (TL)
for Ui1 = 5m/s. It means that the drillstring system is stable under the normal drilling condition
(TL ¬ 98 kN). Along with TL increasing, Re(ω) increases and Im(ω) decreases. It means that
WOB is the instability drive of the drillstring system. As the WOB increases further, the buckling
instability will occur eventually.
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Fig. 6. The first four dimensionless complex frequencies as functions of TL at Ui1 = 5m/s

5.2. Borehole size

Borehole diameter Dch can be approximated to the bit diameter. In order to ensure imple-
ment of wash over fishing operation, 8-in (0.203m) DC should be equipped with the bit not
smaller than 91/2-in (0.2413m) (NDRC, 2007). The borehole size affects the annular flow velo-
city. Under the conditions of Dch = 0.2669m, 0.2413m and 0.314m, the variation of complex
frequencies of the drillstring with fluid velocity of Ui1 are obtained and shown in Fig. 4, Fig. 7
and Fig. 8, respectively. It could be concluded by comparative analysis of these three cases
that: Im(ω) of the first four modes decreases along with increasing Ui1; the critical buckling
velocity (ucd) exceeds 110m/s for Dch = 0.314m (as shown in Fig. 4), ucd = 102.2m/s for
Dch = 0.2669m (Fig. 7) and ucd = 70.9m/s for Dch = 0.2413m (Fig. 8), respectively. It is
shown that the drillstring system is more stable for the wellbore with larger size. Therefore, an
increase in the fluid velocity, both inside and outside the drillstring, will drive the drillstring
system buckling instability.

Fig. 7. The first four complex frequencies as functions of Ui for Dch = 0.2669m
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Fig. 8. The first four complex frequencies as functions of Ui for Dch = 0.2413m

5.3. Drillstring length

In the actual drilling operation, the structure and length of DC are determined according
to the design WOB and remain constant, while length of DP increases in the drilling process.
Keeping L2 = 52m, Im(ω) of the first four modes that varies along with length of the drillstring
is illustrated in Fig. 9. It shows that the relationship between Im(ω) and L is similar to a
parabola. As the well depth increases, the stability of the drillstring system becomes worse, but
the effect of the drillstring length on the stability is smaller and smaller.

Fig. 9. The effect of the drillstring length on natural frequencies

5.4. Drilling fluid density

In addition to carrying cuttings, cooling and lubricating bit, the drilling fluid plays impor-
tant roles in stabilizing the borehole wall and balancing the formation pressure. The formation
pressure is changing with the drilling depth and needs to be balanced by adjusting the dril-
ling fluid density. The density ρf exerts influence on its hydrodynamic characteristic and the
buoyant weight of drillstring. Varying ρf from 800 kg/m

3 to 1800 kg/m3, the first four natural



1420 G.-H. Zhao et al.

frequencies are shown in Fig. 10. With an increase in ρf , the natural frequencies of the system
increase slightly, and the stability improves in a minor way.

Fig. 10. The effect of drilling fluid density on natural frequencies

6. Conclusion

The drillstring in a vertical well is reduced to a stepped fluid-conveying pipe composed of DP
segment and DC segment. Considering the interaction among drillstring gravity, WOB, and
drilling fluid that flows inside and outside the drillstring, we propose an analytical model of
lateral vibration of the drillstring, discuss the dynamic stability by means of complex frequencies
and come to the following conclusions:
• The DC segment whose linear density and stiffness are much larger than that of the DP,
could improve the drillstring stability significantly and has a great effect on the dynamics
of the whole system. Compared with the uniform string model, the stepped DP-DC model
could reflect the dynamic characteristics of the drillstring system better.

• Both WOB and delivery capacity are sources of instability in the drillstring system, and
they have a significant effect on the stability of the drillstring system. Buckling instability
occurs eventually as these two parameters increase further.

• Along with the increasing well depth, natural frequencies decrease parabolically and the
drillstring stability becomes worse. But this influence is smaller and smaller with an in-
crease in the drilling depth.

• Drilling fluid density has a positive effect on the drillstring stability, yet in a minor way.
In the course of drilling operation, one could improve the dynamic stability of the drillstring

system by taking actions such as increasing the DC length properly, optimizing the structure
of BHA, reducing flow rate under the condition of ensuring cuttings carrying, adopting un-
derbalanced drilling technology, and so on. With the development of logging-while-drilling and
controlling technology, the dynamics of drillstring systems with feedback control may be the
focus of research in the future.

Acknowledgments

This project was supported by the Open Fund (OGE201403-10) of Key Laboratory of Oil and Gas

Equipment, Ministry of Education (SWPU), and the National Natural Science Foundation (51134004)

and CSC of China. We also acknowledge association with UNSW.



Dynamic stability of a stepped drillstring conveying drilling fluid 1421

References

1. Chen S.L., Geradin M., 1995, An improved transfer matrix technique as applied to BHA lateral
vibration analysis, Journal of Sound and Vibration, 185, 1, 93-106

2. Dai H.L., Wang L., Ni Q., 2013, Dynamics of a fluid-conveying pipe composed of two different
materials, International Journal of Engineering Science, 73, 67-76

3. Ghasemloonia A., Geoff Rideout D., Butt S.D., 2013, Vibration analysis of a drillstring
in vibration-assisted rotary drilling: finite element modeling with analytical validation, Journal of
Energy Resources Technology, 135, 3, 1-18

4. Ghasemloonia A., Geoff Rideout D., Butt S.D., 2014, Analysis of multi-mode nonline-
ar coupled axial-transverse drillstring vibration in vibration assisted rotary drilling, Journal of
Petroleum Science and Engineering, 116, 36-49

5. Hakimi H., Moradi S., 2010, Drillstring vibration analysis using differential quadrature method,
Journal of Petroleum Science and Engineering, 70, 3-4, 235-242

6. Hannoyer M.J., Paidoussis M.P., 1978, Instabilities of tubular beams simultaneously subjected
to internal and external axial flows, Journal of Mechanical Design, 100, 328-336

7. Jin J.D., Song Z.Y., 2005, Parametric resonances of supported pipes conveying pulsating fluid,
Journal of Fluids and Structures, 20, 763-783

8. Lian Z.H., Zhang Q., Lin T.J., Wang F.H., 2015, Experimental and numerical study of drill
string dynamics in gas drilling of horizontal wells, Journal of Natural Gas Science and Engineering,
27, 3, 1412-1420

9. Luu T.P., 1983, On the dynamics of three systems involving tubular beams conveying fluid, M.
Eng. Thesis, McGill University, Canada

10. Mongkolcheep K., Ruimi A., Palazzolo A., 2015, Modal reduction technique for predicting
the onset of chaotic behavior due to lateral vibrations in drillstrings, Journal of Vibration and
Acoustics, 137, 2, 1-11

11. Navarro-López E.M., Cortés D., 2007, Avoiding harmful oscillations in a drillstring through
dynamical analysis, Journal of Sound and Vibration, 307, 152-171

12. NDRC, 2007, Practice for selection and use of drill pipe and drill collar (SY/T 6288-2007) (in
Chinese), Petroleum Industry Press, Beijing

13. Ni Q., Wang Y.K., Tang M., Luo Y.Y., Yan H., Wang L., 2015, Nonlinear impacting oscil-
lations of a fluid-conveying pipe subjected to distributed motion constraints, Nonlinear Dynamics,
81, 893-906

14. Paidoussis M.P., 1973, Dynamics of cylindrical structures subjected to axial flow, Journal of
Sound and Vibration, 29, 3, 365-385

15. Paidoussis M.P., Luu T.P., Prabhakar S., 2008, Dynamics of a long tubular cantilever co-
nveying fluid downwards, which then flows upwards around the cantilever as a confined annular
flow, Journal of Fluids and Structures, 24, 111-128

16. Panda L.N., Kar R.C., 2007, Nonlinear dynamics of a pipe conveying pulsating fluid with para-
metric and internal resonances, Nonlinear Dynamics, 49, 9-30

17. Qian Q., Wang L., Ni Q., 2008, Vibration and stability of vertical upward-fluid-conveying pipe
immersed in rigid cylindrical channel, Acta Mechanica Solida Sinica, 21, 431-440

18. Rinaldi S., Paidoussis M.P., 2012, Theory and experiments on the dynamics of a free-clamped
cylinder in confined axial air-flow, Journal of Fluids and Structures, 28, 167-179

19. Sahebkar S.M., Ghazavi M.R., Khadem S.E., Ghayesh M.H., 2011, Nonlinear vibration
analysis of an axially moving drillstring system with time dependent axial load and axial velocity
in inclined well, Mechanism and Machine Theory, 46, 743-760



1422 G.-H. Zhao et al.

20. Samuel R., Yao D.P., 2013, Drillstring vibration with hole-enlarging tools: analysis and avo-
idance, Journal of Energy Resources Technology, 135, 3, 1-13

21. Tikhonov V.S., Safronov A.I., 2011, Analysis of postbuckling drillstring vibrations in rotary
drilling of extended-reach wells, Journal of Energy Resources Technology, 133, 4, 043102-043109

22. Wang L., 2009, A further study on the non-linear dynamics of simply supported pipes conveying
pulsating fluid, International Journal of Non-Linear Mechanics, 44, 115-121

23. Xu J., Yang Q.B., 2006, Flow-induced internal resonances and mode exchange in horizontal
cantilevered pipe conveying fluid, Applied Mathematics and Mechanics, 27, 1, 943-951

24. Zamani S.M., Hassanzadeh-Tabrizi S.A., Sharifi H., 2016, Failure analysis of drill pipe: a
review, Engineering Failure Analysis, 59, 605-623

25. Zhang Q., Miska S., 2005, Effects of flow–pipe interaction on drill pipe buckling and dynamics,
Journal of Pressure Vessel Technology, 127, 129-136

26. Zhao M., Zhu X.Z., Wang C.L., 2014, Nonlinear dynamic analysis of drill string system
for horizontal oil well with different positions of stabilizers, Applied Mechanics and Materials,
716-717, 615-618

27. Zhu W.P., Di Q.F., 2011, Effect of prebent deflection on lateral vibration of stabilized drill collars,
SPE-120455-PA

28. Zhu X.Z., He Y.D., Chen L., Yuan H.Q., 2012, Nonlinear dynamics analysis of a drillstring-
bit-wellbore system for horizontal oil well, Advanced Science Letters, 16, 13-19

Manuscript received October 10, 2016; accepted for print July 15, 2017


